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Abstract. DNA microarray allows the monitoring and measurement of
the expression levels of thousands of genes simultaneously in an orga-
nism. A systematic and computational analysis of this vast amount of
data provides understanding and insight into many aspects of biological
processes. Recently, there has been a growing interest in classification
of patient samples based on these gene expressions. The main challenge
here is the overwhelming number of genes relative to the number of
available training samples in the data set, and many of these genes are
irrelevant for classification and have negative effect on the accuracy of
the classifier. The choice of genes affects several aspects of classification:
accuracy, required learning time, cost, and number of training samples
needed. In this paper, we propose a new Probabilistic Model Building
Genetic Algorithm (PMBGA) for the identification of informative genes
for molecular classification and present our unbiased experimental results
on three bench-mark data sets.

1 Introduction

The central dogma of molecular biology states that information is stored in
DNA, transcribed to mRNA and then translated into proteins. The process by
which mRNA and eventually protein is synthesized from the DNA template of
each gene is called gene expression. Gene expression level indicates the amount
of mRNA produced in a cell during protein synthesis; and is thought to be cor-
related with the amount of corresponding protein made. Expression levels are
affected by a number of environmental factors, including temperature, stress,
light, and other signals, that lead to change in the level of hormones and other
signaling substances. Gene expression analysis provides information about dyna-
mical changes in functional state of living beings. The hypothesis that many or
all human diseases may be accompanied by specific changes in gene expressions
has generated much interest among the Bioinformatics community in classifi-
cation of patient samples based on gene expressions for disease diagnosis and
treatment.

Classification based on microarray data faces with many challenges. The
main challenge is the overwhelming number of genes compared to the number
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of available training samples, and many of these genes are not relevant to the
distinction of samples. These irrelevant genes have negative effect on the accu-
racy of the classifier, and increase data acquisition cost as well as learning time.
Moreover, different combination of genes may provide similar classification accu-
racy. Another challenge is that DNA array data contain technical and biological
noises. So, development of a reliable classifier based on gene expression levels is
getting more attention.

The main target of gene identification task is to maximize the classification
accuracy and minimize the number of selected genes. For a given classifier and a
training set, the optimality of a gene identification algorithm can be ensured by
an exhaustive search over all possible gene subsets. For a data set with n genes,
there are 2n gene subsets. So, it is impractical to search whole space exhaustively,
unless n is small. There are two approaches [19]: filter and wrapper approaches for
gene subset selection. In filter approach, the data are preprocessed and some top
rank genes are selected independently of the classifier. Although filter approaches
tend to be much faster, their major drawback is that an optimal subset of genes
may not be independent of the representational biases of the classifier that will
be used during the learning phase [19].

In wrapper approach, the gene subset selection algorithm conducts the search
for a good subset by using the classifier itself as a part of evaluation function.
The classification algorithm is run on the training set, partitioned into internal
training and holdout sets, with different gene subsets. The internal training set
is used to estimate the parameters of a classifier, and the holdout set is used to
estimate the fitness of a gene subset with that classifier. The gene subset with
highest estimated fitness is chosen as the final set on which the classifier is run.
Usually in the final step, the classifier is built using the whole training set and the
final gene subset, and then accuracy is estimated on the test set. When number
of samples in training data set is smaller, cross-validation technique is used.
In k-fold cross-validation, the data D is randomly partitioned into k mutually
exclusive subsets, D1, D2, . . . , Dk of approximately equal size. The classifier is
trained and tested k times; each time i(i = 1, 2, . . . , k), it is trained with D\Di

and tested on Di. When k is equal to the number of samples in the data set,
it is called Leave-One-Out-Cross-Validation (LOOCV)[6]. The cross-validation
accuracy is the overall number of correctly classified samples, divided by the
number of samples in the data. When a classifier is stable for a given data set
under k-fold cross-validation, the variance of the estimated accuracy would be
approximately equal to a(1−a)

N [6], where a is the accuracy and N is the number
of samples in the data set. A major disadvantage of the wrapper approach is
that it requires much computation time.

Numerous search algorithms have been used to find an optimal gene subset.
In this paper, we propose a new method based on Probabilistic Model Building
Genetic Algorithm (PMBGA) [16], which generates offspring by sampling the
probability distribution calculated from the selected individuals under an as-
sumption about the structure of the problem, as a gene selection algorithm. For
classification, we use separately Naive-Bayes (NB) classifier [3] and the weighted
voting classifier [5,18]. The experiments have been done with three well-known
data sets. The experimental results show that our proposed algorithm is able to
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provide better accuracy with selection of smaller number of informative genes
as compared to Multiobjective Evolutionary Algorithm (MOEA) [10].

2 Related Works in Molecular Classification Using
Evolutionary Algorithms

Previously, Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [4], Multi-
objective Evolutionary Algorithm(MOEA) [10] and Parallel Genetic Algorithm
[9] with weighted voting classifier have been used for the selection of informative
genes responsible for the classification of the DNA microarray data.

In the optimization using NSGA-II, three objectives have been identified.
One objective is to minimize the size of gene subset, the other two are the
minimization of mismatches in the training and test samples, respectively. The
number of mismatches in the training set is calculated using LOOCV procedure,
and that in the test set is calculated by first building a classifier with the training
data and the gene subset and then predicting the class of the test samples using
that classifier. Due to inclusion of the third objective, the test set is, in reality,
has been used as a part of training process and is not independent. Thus the
reported 100% classification accuracy for the cancer data sets is not generalized
accuracy, rather a biased accuracy on available data. In supervised learning, the
final classifier should be evaluated on an independent test set that has not been
used in any way in training or in model selection [7,17].

In the work using MOEA, also three objectives have been used; the first and
the second objectives are the same as above, the third object is the difference in
error rate among classes, and it has been used to avoid bias due to unbalanced
test patterns in different classes. For decision making, these three objectives have
been aggregated. The final accuracy presented is the accuracy on the training
set (probably on the whole data) using LOOCV procedure. It is not clear how
the available samples are partitioned into training and test sets, and why no
accuracy on the test set has been reported.

In the gene subset selection using parallel genetic algorithm, the first two
objectives of the above are used and combined into a single one by weighted
sum, and the accuracy on the training and test sets (if available) have been
reported. In our work, we follow this kind of fitness calculation.

3 Classifiers and Accuracy Estimation

3.1 Naive-Bayes Classifier

Naive-Bayes classifier uses probabilistic approach to assign the class to a sample.
That is, it computes the conditional probabilities of different classes given the
values of the genes and predicts the class with highest conditional probability.
During calculation of conditional probability, it assumes the conditional indepen-
dence of genes. Let C denote a class from the set of m classes, {c1, c2, . . . , cm},
X is a sample described by a vector of n genes, i.e., X =< X1, X2, . . . , Xn >;
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the values of the genes are denoted by the vector x =< x1, x2, . . . , xn >. Naive-
Bayes classifier tries to compute the conditional probability P (C = ci|X = x)
(or in short P (ci|x)) for all ci and predicts the class for which this probability
is the highest. The conditional probability takes the following form:

P (ci|x) ∝ P (x1|ci)P (x2|ci) · · ·P (xn|ci)P (ci) . (1)

Taking logarithm we get,

lnP (ci|x) ∝ lnP (x1|ci) + · · · + lnP (xn|ci) + lnP (ci) . (2)

For a continuous gene, the conditional density is defined as

P (xj |ci) =
1√

2πσji

e
− (xj−µji)

2

2σ2
ji (3)

where µji and σji are the expected value and standard deviation of gene Xj in
class ci. Taking logarithm of equation (3) we get,

lnP (xj |ci) = −1
2

ln(2π) − lnσji − 1
2

(
xj − µji

σji

)2

. (4)

Since the first term in (4) is constant, it can be neglected during calculation of
lnP (ci|x). The advantage of the NB classifier is that it is simple and can be
applied to multi-class classification problems.

3.2 Classifier Based on Weighted Voting

Classifier based on weighted voting has been proposed in [5,18]. We will use the
term Weighted Voting Classifier (WVC) to mean this classifier. To determine
the class of a sample, weighted voting scheme has been used. The vote of each
gene is weighted by the correlation of that gene with the classes. The weight of
a gene g is the correlation metric defined as

W (g) =
µg

1 − µg
2

σg
1 + σg

2
(5)

where µg
1, σg

1 and µg
2, σg

2 are the mean and standard deviation of the values
of gene g in class 1 and 2, respectively. The weighted vote of a gene g for an
unknown sample x is

V (g) = W (g)
(

xg − µg
1 + µg

2

2

)
(6)

where xg is the value of gene g in that unknown sample. Then, the class of the
sample x is

class(x) = sign




∑
g∈G

V (g)


 (7)
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where G is the set of selected genes. If the computed value is positive, the sample
x belongs to class 1; negative value means x belongs to class 2. But this kind
of prediction does not make classification with reasonable confidence [5,18]. For
more confident classification, we need to consider prediction strength. If we define
V+ and V− are the absolute values of sum of all positive V (g) and negative V (g),
respectively, the prediction strength,

ps =
∣∣∣∣V+ − V−
V+ + V−

∣∣∣∣ . (8)

The classification according to (7) is accepted if ps > θ(θ is the prefixed pre-
diction strength threshold), else the sample is classified as undetermined. In our
experiment, we consider undetermined samples as misclassified samples. This
classifier is applicable to two-class classification tasks.

3.3 Accuracy Estimation

We use LOOCV procedure during the gene selection phase to estimate the accu-
racy of the classifier for a given gene subset and a training set. In LOOCV, one
sample from the training set is excluded, and rest of the training samples are
used to build the classifier. Then the classifier is used to predict the class of the
left out one, and this is repeated for each sample in the training set. The LOOCV
estimate of accuracy is the overall number of correct classifications, divided by
the number of samples in the training set. Thereafter, a classifier is built using
all the training samples, and it is used to predict the class of all test samples one
by one. Final accuracy on the test set is the number of test samples correctly
classified by the classifier, divided by the number of test samples. Overall accu-
racy is estimated by first building the classifier with all training data and the
final gene subset, and then predicting the class of all samples (in both training
and test sets) one by one. Overall accuracy is the number of samples correctly
classified, divided by total number of samples. This kind of accuracy estimation
on test set and overall data is unbiased because we have excluded test set during
the search for the best gene subset.

4 Gene Selection Method

A new method based on Probabilistic Model Building Genetic Algorithm
(PMBGA) [16] has been used as a gene selection method. PMBGA replaces
the crossover and mutation operators of traditional evolutionary computations;
instead, it uses probabilistic model building and sampling techniques to gene-
rate offspring. It explicitly takes into account the problem specific interactions
among the variables. In evolutionary computations, the interactions are kept
implicitly in mind; whereas in a PMBGA, the interrelations are expressed expli-
citly through the joint probability distribution associated with the individuals of
variables, selected at each generation. The probability distribution is calculated
from a database of selected candidate solutions of previous generation. Then,
sampling this probability distribution generates offspring. The flow chart of a
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PMBGA is shown in figure 1. Since a PMBGA tries to capture the structure
of the problem, it is thought to be more efficient than the traditional genetic
algorithm. The other name of PMBGA is Estimation of Distribution Algorithm
(EDA), which was first introduced in the field of evolutionary computations by
Mühlenbein in 1996 [11]. A PMBGA has the follow components: encoding of

                                                 

                                                                                                                   

                   Y 

                                                               N                                                                               

Generate initial population 

Evaluate each individual of the population 

Termination 
criteria satisfied?

Select some promising individuals and estimate the 
joint probability distribution 

Generate offspring by sampling that probability 
distribution and evaluate them 

Replace old population according to replacement 
strategy with new offspring  

Solution 

Fig. 1. Flowchart of a PMBGA

candidate solutions, objective function, selection of parents, building of a struc-
ture, generation of offspring, selection mechanism, and algorithm parameters like
population size, number of parents to be selected, etc.

The important steps of the PMBGA are the estimation of probability distri-
bution, and generation of offspring by sampling that distribution. Different kinds
of algorithms have been proposed on PMBGA. Some assume the variables in a
problem are independent of one another, some consider bivariate dependency,
and some multivariate. If the assumption is that variables are independent, the
estimation of probability distribution as well as generation of offspring becomes
easier. Reviews on PMBGA can be found in [8,12,13,14,15]. For our experiments,
we propose another one which is described in the next subsection.

4.1 Proposed Method

Before we describe our proposed method, we need to give some notations. Let
X = {X1, X2, . . . , Xn} be the set of n binary variables corresponding to n genes
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in the data set, and x = {x1, x2, . . . , xn} be the set of values of those variables
with xi ∈ {0, 1}(i = 1, . . . , n) being the value of the variable Xi. N is the num-
ber of individuals selected from a population for the purpose of reproduction.
p(xi, t) is the probability of variable Xi being 1 in generation t and M(xi, t) is
the marginal distribution of that variable. The joint probability distribution is
defined as p(x, t) =

∏n
i=1 p(xi, t|pai) where p(xi, t|pai) is the conditional pro-

bability of Xi in generation t given the values of the set of parents pai. If the
variables are independent of one another, the joint probability distribution beco-
mes the product of the probability of each variable p(xi, t). To select informative
genes for molecular classification, we consider that variables are independent.
We use binary encoding and probabilistic approach to generate the value of each
variable corresponding to a gene in the data set. The initial probability of each
variable is set to zero assuming that we don’t need any gene for classification.
Then, that probability is updated by the weighted average of marginal distribu-
tion and the probability of previous generation. That is, the probability of Xi

has been updated as

p(xi, t + 1) = αp(xi, t) + (1 − α)M(xi, t)w(gi) (9)

where α ∈ [0, 1] is called the learning rate, and w(gi) ∈ [0, 1] is the normali-
zed weight of gene gi corresponding to Xi in the data set. This weight is the
correlation of gene gi with the classes. This is calculated as follows:

w(gi) =
|W (gi)|

MAX{|W (g1)|, |W (g2)|, . . . |, W (gn)|} (10)

where each W (gi) is calculated according to (5). The marginal distribution of
Xi is calculated as follows:

M(xi, t) =

∑N
j=1 δi

j

N
(11)

where δi
j ∈ {0, 1} is value of variable Xi in the selected jth individual.

By sampling p(xi, t + 1), the value of Xi is generated for the next genera-
tion. Let us give an example of generating an offspring. Suppose, there are
4 genes in the data set; the normalized weight vector of genes and the pro-
bability vector of the corresponding variables at generation t are w(g) =
(0.01, 1.0, 0.75, 0.05) and p(x, t) = (0.001, 0.8, 0.4, 0.5), respectively. The selec-
ted individuals from a population at generation t are (0, 1, 1, 0), (0, 1, 0, 1)and
(1, 1, 1, 0). Then, the corresponding marginal probabilities of variables will be
M(x, t) = (0.33, 1.0, 0.67, 0.33). If α = 0.1, the updated probability according to
(9) will be p(x, t + 1) =(0.00307,0.98,0.49225, 0.06485). Now generate 4 random
numbers from uniform distribution and suppose they are (0.001, 0.45, 0.6, 0.07).
Comparing each random value with corresponding p(xi, t), we get an offspring
(1, 1, 0, 0).

4.2 Encoding and Fitness Calculation

In our experiments, the individuals in a population are binary-encoded with
each bit for each gene. If a bit is ‘1’, it means that the gene is selected in
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the gene subset; ‘0’ means its absence. The fitness of an individual has been
assigned as the weighted sum of the accuracy and dimensionality of the gene
subset corresponding to that individual. It is

fitness(X) = w1 ∗ a(X) + w2 ∗ (1 − d(X)/n) (12)

where w1 and w2 are weights from [0, 1], a(X) is the accuracy of X on training
data, d(X) the number of genes selected in X, and n is the total number of
genes. This kind of fitness calculation was used in [9].

5 Experiments

5.1 Data Sets

We evaluate our method on three cancer data sets: Leukemia, Lymphoma and
Colon. Leukemia and Lymphoma data sets need some preprocessing because the
first one has some negative values while the second one has some missing values;
we used the preprocessed data from
http://www.iitk.ac.in/kangal/bioinformatics.

Leukemia Data Set. This is a collection of gene expressions of 7129 genes of 72
leukemia samples reported by Golub et al. [5]. The data set is divided into an
initial training set of 27 samples of Acute Lymphoblastic Leukemia (ALL) and
11 samples of Acute Myeloblastic Leukemia (AML), and an independent test
set of 20 ALL and 14 AML samples. The data sets can be downloaded from
http://www.genome.wi.mit.edu/MPR. These data sets contain many negative
values which are meaningless for gene expressions, and need to be preprocessed.
The negative values have been replaced by setting the threshold and maximum
value of gene expression to 20 and 16000, respectively. Then genes that have
max(g) − min(g) > 500 and max(g)/min(g) > 5 are excluded, leaving a total
of 3859 genes. This type of preprocessing has been used in [4]. Then the data
has been normalized after taking logarithm of the values.

Lymphoma Data Set. The Diffused Large B-Cell Lymphoma (DLBCL) data set
[1] contains gene expression measurements of 96 normal and malignant lym-
phocyte samples, each measured using a specialized cDNA microarray, contai-
ning 4026 genes expressed in lymphoid cells or which are of known immunological
or oncological importance. The expression data in raw format are available at
http://llmpp.nih.gov/lymphoma/data/figure1/figure1.cdt. It contains 42 sam-
ples of DLBCL and 54 samples of other types. There are some missing gene
expression values which have been replaced by applying k-nearest neighbor al-
gorithm in [4]. Then the expression values have been normalized, and the data
set is randomly divided into mutually exclusive training and test sets of equal
size.



422 T.K. Paul and H. Iba

Colon Data Set. This data set, a collection of expression values of 62 colon biopsy
samples measured using high density oligonucleotide microarrays containing 2000
genes, is reported by Alon et al. [2]. It contains 22 normal and 40 colon cancer
samples. It is available at http://microarray.princeton.edu/oncology. These gene
expression values have been log transformed, and then normalized. We divide
the data randomly into training and test sets of equal size. The samples in one
set are exclusive of the other set.

5.2 Experimental Results

For each data set and each experiment, the initial population is generated
with each individual having 10 to 60 random bit positions set to ‘1’. This
has been done to reduce the run time. For calculation of marginal distribu-
tion, we select best half of the population (truncation selection, τ = 0.5). The
settings of other parameters are: population size=500, maximum generation=10,
elite=10%, α=0.1, w1=0.75 and w2=0.25. Elitism replacement has been used to
prevent the so far found best individual of previous generations from being lost.
We use both Naive-Bayes and weighted voting classifiers separately to predict
the class of a sample. The algorithm terminates when either there is no impro-
vement of the fitness value of the best individual in 5 consecutive generations or
maximum number of generations has passed.

For all data sets, the average classification accuracy returned and number
of genes selected by our algorithm in 50 independent runs are provided. For
comparison, we provide only the experimental results of MOEA by Liu and Iba
[10]. Though it is stated in the paper that the accuracy presented is on training
set, it is actually the accuracy on all data (since all data have been used as
training set) with prediction strength threshold 0. In the presented results, each
value of the form x±y indicates the average value x with the standard deviation
y. The experimental results are shown in tables 1, 2 and 3. In the tables, WVC
stands for weighted voting classifier and θ is the prediction strength threshold.

From the experimental results, we find that our algorithm using either Naive-
Bayes or weighted voting classifier with θ = 0 returns the same average accuracy
on all three training data, but using weighted voting classifier (θ=0) provides
better accuracy on test data as compared to using Naive-Bayes classifier. Weigh-
ted voting classifier with θ = 0.30, provides 100% and 90%, 97% and 92%, 92%
and 74% average accuracy on training and test sets of Leukemia, Lymphoma
and Colon data, respectively. Our algorithm performs badly on colon data as
compared to on other two data sets. According to our knowledge, there have
been reported no algorithms and no classifiers that return 100% accuracy on
this data set. The overall average accuracy returned by our method on each
data set using both classifiers is superior to the accuracy returned by MOEA.

During the experiments, we found that our algorithm was selecting in each
independent run only 2 genes using both Naive-Bayes and weighted voting clas-
sifier with prediction strength threshold 0 in the case of Leukemia data set.
Weighted voting classifier with prediction strength threshold of 0.30 selects 2.02,
2.04 and 2.48 genes on the average for the three data sets: Leukemia, Lymphoma
and Colon, respectively. In the case of Lymphoma and Colon data sets, Naive-
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Bayes classifier selects higher number of genes with higher standard deviations
than weighted voting classifier. The number of genes selected by applying MOEA
are larger than those selected by our algorithm.

Table 1. The average accuracy returned by our algorithm on training and test data
using weighted voting and Naive-Bayes classifiers

Data Set WVC(θ=0) WVC(θ=0.30) Naive-Bayes Classifier
Train Set Test set Train Set Test set Train Set Test Set

Leukemia 1.0 ± 0.0 0.92 ± 0.05 1.0 ± 0.0 0.90 ± 0.03 1.0 ± 0.0 0.91 ± 0.09
Lymphoma 0.99 ± 0.01 0.92 ± 0.04 0.97 ± 0.02 0.92 ± 0.05 0.99 ± 0.01 0.91 ± 0.05
Colon 0.96 ± 0.03 0.80 ± 0.07 0.92 ± 0.04 0.74 ± 0.09 0.96 ± 0.04 0.79 ± 0.06

Table 2. The average number of genes selected by our algorithm using weighted voting
and Naive-Bayes classifiers

Data Set WVC (θ=0) WVC (θ=0.30) NB Classifier MOEA
Leukemia 2.0 ± 0.0 2.02 ± 0.14 2.0 ± 0.0 15.20 ± 4.54
Lymphoma 2.66 ± 2.22 2.04 ± 0.20 3.96 ± 4.70 12.90 ± 4.40
Colon 2.30 ± 0.61 2.48 ± 0.81 3.11 ± 1.32 11.4 ± 4.27

Table 3. The overall average accuracy reported by our algorithm on three data sets
using weighted voting and Naive-Bayes classifiers

Data Set WVC (θ=0) WVC (θ=0.30) NB Classifier MOEA
Leukemia 0.96 ± 0.02 0.95 ± 0.02 0.95 ± 0.05 0.90 ± 0.07
Lymphoma 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.90 ± 0.03
Colon 0.88 ± 0.03 0.83 ± 0.05 0.88 ± 0.03 0.80 ± 0.08

6 Discussion

Identification of the most useful genes for classification of available samples into
two or more classes is a multi-objective optimization problem. There are many
challenges for this classification task. Unlike other functional optimizations which
use the values of the functions as fitness, this problem needs something beyond
these values. It may be the case that you get 100% accuracy on training data
but 0% accuracy on test data. So, the selection of proper training and test sets,
and design of a reliable search method are very important. This problem has
been solved in the past using both supervised and unsupervised methods. In
this paper, we propose a new PMBGA for the selection of the gene subsets. Our
method outperforms MOEA by selecting the most useful gene subset resulting
in better classification accuracy.

In microarray data, overfitting is a major problem because the number of
training samples given is very small compared to the number of genes. To avoid
it, many researchers use all the data available to guide the search and report the
accuracy that was used during the gene selection phase as the final accuracy.
This kind of estimation is biased towards the available data, and may predict
poorly when used to classify unseen samples. But our accuracy estimation is



424 T.K. Paul and H. Iba

unbiased because we have isolated the test data from training data during gene
selection phase. Whenever a training set is given, we have used that one only for
the selection of genes, and the accuracy on the independent test set is presented
using the final gene subset; whenever the data is not divided, we randomly
partition it into two exclusive sets: training and test sets, and provide accuracy
as described before.

Our algorithm finds smaller numbers of genes but results in more accurate
classifications. This is consistent with the hypothesis that for a smaller training
set, it may be better to select a smaller number of genes to reduce the algorithm’s
variance; and when more training samples are available, more genes should be
chosen to reduce the algorithm’s bias [7].

7 Summary and Future Work

In this paper, we have proposed a novel PMBGA for selection of informative ge-
nes aimed at maximizing classification accuracy for classification of DNA micro-
array data using either Naive-Bayes or weighted voting classifier. In our algo-
rithm, the normalized weight of a gene is incorporated into the equation of
updating the probability of the corresponding variable. The two objectives of
the problem have been scalarized into one objective. We used the Leave-One-
Out-Cross-validation technique to calculate the accuracy of an individual (a gene
subset) on training data. By performing experiments, we found that the the ac-
curacy was notably improved and the number of gene selected was smaller as
compared to MOEA.

However, we have not attempted to identify the accession numbers of the
selected genes and to maintain population diversity during the experiments;
which are very important for cancer diagnosis and multimodal optimization. In
the future, we would like to take care of these issues during experiments. We also
plan to extend our algorithm for noisy DNA microarray data. As Naive-Bayes
classifier is applicable to multi-class classification, we would like to apply our
algorithm using this classifier on larger multi-class cancer data sets.
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